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Appendix B: Road Map (Schematic)
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Appendix B: Logistic Regression

Appendix B Post Hole:

Interpret a fitted simple logistic regression model, noting the 
statistical significance of the relationship, the direction of the 
relationship, and the magnitude of the relationship by comparing two 
fitted probabilities (or fitted percentages).

Appendix B Technical Memo and School Board Memo:

Conduct a logistic regression analysis with a dichotomous outcome 
and a continuous predictor. Generate and discuss a plot of 
prototypical fitted probabilities (or fitted percentages). 
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Appendix B: Research Question 

Data Set: Anonymized data from 334 9th graders (class of 2009) from Riverside High School.

Variables:

Outcomes: 9th grade math placement (PLACEMENT) where a value of 1 indicates placement 

into 9h grade college-prep math, and 0 indicates non-college-prep.

Predictors: Scaled score on the 8th grade Math MCAS exam (MCAS)

A set of race/ethnicity indicators: ASIAN, BLACK, LATINO and MIXED, where WHITE 
is reserved as a reference category.

Two Algebraically Equivalent Models:
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Theory: In the 9th grade, the more mathematically “advanced” students are placed (i.e., tracked) into “college-prep 

math” courses, while the other students will take lower level “business math” courses in the 9th grade. Due to course-
prerequisite structures and perhaps other factors, the placement decision has a huge impact on the academic future of 

9th graders. The decision should be fair, but is the decision biased against academic minorities? If there were no bias, 

students with the same MCAS Math scores should have the same probability of college-prep placement, regardless of 

race/ethnicity. (Note that this is only a theory. Differences by race/ethnicity do not definitively prove bias on the part of 

the school. For example, students have some choice, and different students may choose differently.) 

Research Question: Controlling for 8th Grade Math MCAS scores, are Black and Hispanic students less likely to be 

placed in 9th-grade college preparation math courses?
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Figure B.1. Fitted probabilities of placement in 9th grade college-prep math 
by race/ethnicity and Math MCAS scaled scores from the 8th grade (n= 334).

On the Y axis, we 
have fitted 
probabilities. By 
definition, a 
probability is between 
0 and 1 (inclusive). If 
you like, you can 
multiply the 
probabilities by 100 to 
get percentage 
chances. For example, 
a probability of .90 is 
a 90% chance. The 
probabilities are 
“fitted” because we 
estimated them based 
on our fitted model.

On the X axis, we have 8th grade Math MCAS scores. We see that higher scores are associated with higher
probabilities of placement in 8th grade algebra (for all racial/ethnic groups).  To see the racial/ethnic differences, 
let’s focus on students who scored a 240 on the 8th grade Math MCAS:

72%

94%

Among student who scored 240, White students are 94% likely to be placed in college-prep math, and Hispanic 
students are 72% likely to be placed in college-prep math.

Beginning at the End: The Answer
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Beginning at the Beginning: The Data Set
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Bivariate Scatterplot of PLACEMENT vs. MCAS
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A Simple Linear Regression of CollegePrep vs. MCAS

Problem #1: Impossible predictions outside the range of our outcome values.

Problem #2: The distributions of the residuals (conditional on the predictor) are neither normal nor homoscedastic.
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The Mean For Dichotomies: Reprise From Unit 3, Post Hole 3 

Let’s say our sample (N=12)  is 1/3  boys:

MALE: 1 0 0 1 0 0 1 0 1 0 0 0 
Please show your work:

.49Please note the standard deviation of the raw distribution:

.24Please note the variance of the raw distribution:

2.67Please note the sum of squared mean deviations:

.5Please note the mean of the raw distribution:

.67.109-.33.330

.67.109-.33.330

.67.109-.33.330

1.37.449.67.331

.67.109-.33.330

1.37.449.67.331

.67.109-.33.330

.67.109-.33.330

1.37.449.67.331

.67.109-.33.330

.67.109-.33.330

1.37.449.67.331

Z-Score

Square 
Mean 

Deviation
Mean 

DeviationMeanRaw

Why is the mean the proportion of ones?

In our sample of 12, we have 4 students who are 

boys.  Each of those 4 students gets a 1 for MALE, 

and everybody else (each of the girls) gets a 0.  When 

we add up the values for MALE, we are actually 

counting the number of boys. (That is the beauty of 

0/1 coding for dichotomies, also unfortunately known 

as “dummy coding.”) When we take the average, we 

are dividing the total number of boys in our sample 

by the total number of students in our sample, thus 

we get the proportion of boys in our sample: .33, or 

1/3, or 33%.

The trick to naming dummy variables:

You can name variables anything you want, but there 

is an especially helpful naming convention for dummy 

variables. You should name the variable after the 

thing that gets a 1, so that the 1 stands for “Yes” and 

the 0 stands for “No.”

Good Practice:

MALE, a variable where 1 = male and 0 = female

FEMALE, a variable where 1 = female and 0 = male

Bad Practice:

GENDER, a variable where 1 = male and 0 = female

GENDER, a variable where 1 = male and 2 = female

© Sean Parker                                                    EdStats.Org
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Linear Probability Model

εββ ++= MCASPLACEMENT 10 MCASPLACEMENTp 013.40.2)1( +−==

MCASPLACEMENTp 013.40.2)1( +−==

Good Old General Linear Model:

Throughout the course, we start by trying 

to predict individuals, but then in light of 

the difficulty, we end up adopting the 

more tractable goal of predicting 

averages.  Since the average of a 

dichotomy is a probability, we can 

predict probabilities with our linear 

model. With a linear probability model, 

we recognize we are predicting 

probabilities, and we give up right away 

on predicting individuals by jettisoning 

the error term.

MCASPLACEMENTp 10)1( ββ +==
Linear Probability Model:

εββ ++= MCASPLACEMENT 10

72.240*013.40.2)240|1( =+−=== MCASPLACEMENTp
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Exploratory Data Analysis

Create ten equal-sized bins of MCAS scores.

Within each bin, place a point at the mean PLACEMENT and the mean MCAS score.

Notice that the relationship is non-linear!

© Sean Parker                                                    EdStats.Org
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R Script For Logistic Exploratory Data Analysis

# a function for logistic exploratory work
logistic.explore <- function(outcome, predictor, my.y.axis.label='', my.x.axis.label='') {

# pairwise deletion of missing data
outcome <- outcome[is.na(outcome)==FALSE & is.na(predictor)==FALSE]
predictor <- predictor[is.na(outcome)==FALSE & is.na(predictor)==FALSE]
# create basic scatterplot
plot(outcome~predictor, ylab=my.y.axis.label, xlab=my.x.axis.label)
# create ten equal-sized bins based on the predictor
ten.bins <- ceiling(rank(predictor)/(length(predictor)/10))
# calculate the mean outcome for each bin
outcome.bins <- aggregate(outcome, by=list(ten.bins), FUN=mean)
# calculate the mean predictor for each bin
predictor.bins <- aggregate(predictor, by=list(ten.bins), FUN=mean)
# in each of the ten bins, plot the mean outcome vs. the mean predictor
points(predictor.bins[,2], outcome.bins[,2], pch=16, col='red') 
# fit the model for the sake of adding a fitted logistic curve
logistic.model <- glm(outcome ~ predictor, family=binomial("logit"))
# create protypical predictor values for the fitted logistic curve
proto.pred <- seq(min(predictor), max(predictor), by=.001)
# generate predicted values for the fitted logistic curve
pred <- predict(logistic.model, newdata=data.frame(predictor=proto.pred))
# create an inverse logit function
inv.logit <- function(x) {exp(x)/(1+exp(x))}
# plot the fitted logistic curve
lines(prototemp, inv.logit(pred))

}

logistic.explore(placement, mcas, 'Probability of Placement', '8th Grade Math MCAS Score')
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A Fitted Logistic Ogive

A logistic ogive is an S-shaped curve.  The logistic ogive is a member of the exponential family of curves.

Not bad!

© Sean Parker                                                    EdStats.Org



Appendix B/Slide 13

Linear Models vs. Non-Linear Models

Some Linear Models:

εββ ++= MCASPLACEMENT 10

MCASPLACEMENTp 10)1( ββ +==

εββββββ ++++++= MIXEDHISPANICBLACKASIANMCASPLACEMENT 543210

What makes these models linear is that the right-hand side 
of the equation is simply a variable (or variables) times 
something plus something. Recall from 8th grade algebra 
that y = mx + b is the equation for a straight line in two 
dimension. Recall (perhaps) from multivariable calculus or 
linear algebra that z = mx + ny+ b is the equation for a 
straight plane in three dimensions.

Not all models are linear! To predict probabilities with a logistic ogive, we can go non-linear. (But we need not!)

)( 101

1
)1( MCASe

PLACEMENTp ββ +−+
==

A Non-Linear Formulation of the Logistic Model:

An Algebraically Equivalent Linear Formulation of the Logistic Model:

MCAS
PLACEMENTp

PLACEMENTp
e 10)1(1

)1(
log ββ +=









=−
=

In this formulation, you can see the “linear 
component”, but it’s in the exponent of e (Euler’s 
number, approximately 2.7). And, all that is in the 
denominator of a strange fraction. Thus, the 
modeled outcome is clearly more than “a variable 
times something plus something.”

The left-hand side of the equation is in log odds 
(or “logits”). The right-hand side is linear. This 
model is “linear in the log odds” or “linear in the 
logits.” (More about odds in the next slide.)

Hitherto in this course, all our models have been so-called “general linear models.” Our outcomes and predictor(s) 
have been linked by an “identity” where the conditional distributions of residuals were “normal.” Now, we are 
entering the world of “generalized linear models.” We can use links other than “identity.” Here, we use a “logit” link 
where the conditional distribution of residuals is “binomial.”

© Sean Parker                                                    EdStats.Org
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Understanding “Log Odds”: Odds and Logs

Odds: The Wizard of Odds
Have you have said of a possible event, “The odds are 50/50” or “There’s a 50/50 chance”? You were using odds. You 
were saying, “it would be a fair bet, if I were to wager $50 that the event will happened, and you  were to wager $50 
that the event won’t happen, and winner takes all.” Gamblers like odds.  Note that 50/50 is a fraction that simplifies 
to 1/1 which simplifies to 1, but it’s always best to think of odds as a fraction, no matter how they are reported.

Probability is one way to quantify chance. Odds are another way to quantify chance. Probabilities, which are bounded 
from 0 to 1, and odds, which have a lower bound of 0 but no upper bound as they can go to positive infinity, have a 
one-to-one relationship. Iff the probability is 0, then the odds are 0.  Iff the probability is 1, then the odds are infinite. 
If you tell me the probability, I can tell you the odds, and vice versa. Here are the rules:

Here’s my trick for converting odds to probabilities: Turn the odds to a fraction in which the numerator and 
denominator sum to 100.  Then, the numerator is the probability in percentage form.

When the probability is greater than .50 (or 50%), the odds are greater than 1, and vice versa.
When the probability is less than .50 (or 50%), the odds are between 0 and 1, and vice versa.

   99 then ,
1

99
99 iff     20 then ,

80

20
25. iff     75 then ,

25
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50
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EVENTodds

EVENTodds
EVENTp

EVENTp

EVENTp

EVENTp

EVENTp
EVENTodds

Logs: I’m a Lumberjack, and I’m Okay
Logs (or logarithms) are related to exponents (i.e., powers).  
The base of the “natural log” is e (Euler’s number, about 2.7). Euler’s number is one of the five most important 
numbers: 0, 1, π, i and e. 
(Some more explanatiion goes here.)

Log odds (or logits) are unbounded (with a domain of negative infinity to positive infinity).  This is important because 
our predictors are not necessarily bounded, so our outcomes should be not necessarily bounded.
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Fitting The Logistic Model: Maximum Likelihood Estimation (MLE)

Quick Introduction to MLE: The classic role-playing game, Dungeons and Dragons, is famous for using 
funky dice to generate random numbers. In addition to your typical 6-sided dice (which randomly 
generate numbers from 1-6), D&D uses 4-sided dice (1-4), 8-sided dice (1-8), 10-sided dice (0-9), 12-
sided dice (1-12), and 20-sided dice (1-20).  Thus there are six types of dice. Suppose I role a single 
die behind my dungeon-master screen, and you have to guess which die (4-, 6-, 8-, 10-, 12-, or 20-
sided).  I rolled a 7.  What is your guess?  What is the probability of rolling a 7 given that I rolled a 4-
sided die? p(7 | 4-sided) = 0,  p(7 | 6-sided) = 0,  p(7 | 8-sided) = .125, p(7 | 10-sided) = .1, p(7 | 12-
sided) = .083,  and p(7 | 20-sided) = .05. Note that the 8-sided die gives us the maximum likelihood.

Hitherto in this course, we have estimated the parameters for our models using the method of ordinary least squares (OLS, see 
Unit 1). With OLS, we choose the parameters (the intercept (β0) and slope (β1)) that minimized the sum of squared residuals. As it 
happens, when we minimized the sum of squared residuals, we maximized the likelihood of the data given the parameters (β

0
and 

β
1
), when our residuals are normally distributed. When our outcome is dichotomous, our residuals are no longer normally 

distributed; they are binomially distributed.

When we ask about a likelihood, we ask, given parameters (e.g., intercept and slope), how likely is the data that we  observe? No 
matter what the parameters, it’s always unlikely that we observe exactly the data that we observe. Nevertheless, the data are 
more likely under some parameters than under other parameters. When we ask about MAXIMUM likelihood, we ask what 
parameters make the data that we observe MOST likely.

Example Data Set

27919

27018

26817

26016

25405

25014

24813

22802

21801

MCAS
PLACEM
ENT

ID

For the sake of illustration, let’s work with a small data set. Let’s calculate the likelihood that we would 
observe this data if students were placed into college-prep math based on a coin toss, thus our intercept 
and slope for our logistic model are both zero. Recall from grade-school probability that the probability 
of calling a coin flipped in the air is .5.  The probability of calling two coin flips in a row is .25 (.5*.5).  
The probability of calling three coin flips in a row is .125 (.5*.5*.5). Now, if students are placed by coin 
flip, the likelihood that we observe PLACEMENT values of 0, 0, 1, 1, 0, 1, 1, 1 and 1, for subjects 1-9 
respectively, is the same as the likelihood of tossing a coin tails, tails, heads, heads, tails, heads, heads, 

heads and then heads.

.00195.5*.5*.5*.5*.5*.5*.5*.5*.50)slope 0,intercept|(dataLikelihood ====

We can calculate the likelihoods for all combinations of intercepts and slopes and observe the MAXIMUM 
likelihood. (Or we can use calculus!)  On the next slide are four graphical examples with this data.

© Sean Parker                                                    EdStats.Org
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Four Graphical Examples of Likelihoods

© Sean Parker                                                    EdStats.Org
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R Script For Maximum Likelihood Animation

maximum.likelihood.animation <- function(intercept=0,  slope=0) {
old.par <- par(pty='s', lend=1)   # save current grap hical paramters

on.exit(par(old.par))             # reset graphical  parameters when done
ID <- 1:9                         # generate data
PLACEMENT <- c(0,0,1,1,0,1,1,1,1)
MCAS <- c(218,228,248,250,254,260,268,270,278)
graphics.off()                    # turn off graphi cs.
windows(8, 6)                     # open a carefull y sized window to fit the bins as per next.
par(mar=c(6, 4, 4, 2) + 0.1)
inv.logit <- function(x) {exp(x)/(1+exp(x))}    # cre ate an inverse logit function
proto.MCAS <- seq(200, 280, .01)  # create protypical values for the fitted probability curve
intercept.diff <- ((-37.8524)-intercept)/50     # gen erate the 60 steps to a perfect fit
new.intercept <- c(rep(intercept, 10), intercept+(1:5 0)*intercept.diff)
slope.diff <- ((0.1543)-slope)/50
new.slope <- c(rep(slope, 10), slope+(1:50)*slope.dif f)
for (i in 1:60) {                 # begin animation
plot(PLACEMENT~MCAS, ylab='Probability of 9th Grade  College-Prep Placement',  # draw the plot

xlab='8th Grade Math MCAS Scaled Scores', ylim=c(0, 1), xlim=c(200,280), cex.lab=.8)
proto.fitted.prob <- inv.logit(new.intercept[i] + new .slope[i]*proto.MCAS)    # create protypical values
fitted.prob <- inv.logit(new.intercept[i] + new.slope [i]*MCAS)
lines(proto.MCAS, proto.fitted.prob, lwd=2)     # d raw the fitted probability curve
segments(MCAS[PLACEMENT==0], PLACEMENT[PLACEMENT==0], MCAS[PLACEMENT==0],

fitted.prob[PLACEMENT==0], lty='dotted', col="darkr ed")   # highlight the fitted probability for each observation
segments(MCAS[PLACEMENT==1], PLACEMENT[PLACEMENT==1], MCAS[PLACEMENT==1],

fitted.prob[PLACEMENT==1], lty='dotted', col="darkb lue")
prob.given <- (fitted.prob^PLACEMENT)*((1-fitted.prob )^(1-PLACEMENT))   # show the likelihood math
prob.given.r <- formatC(prob.given, digits=2, format= 'f')
{title(main=bquote('Likelihood (data | intercept ='

~.(formatC(new.intercept[i], digits=2, format='f')) ~', slope ='
~.(formatC(new.slope[i], digits=3, format='f'))~') ='
~.(prob.given.r[1])~'*'
~.(prob.given.r[2])~'*'
~.(prob.given.r[3])~'*'
~.(prob.given.r[4])~'*'
~.(prob.given.r[5])~'*'
~.(prob.given.r[6])~'*'
~.(prob.given.r[7])~'*'
~.(prob.given.r[8])~'*'
~.(prob.given.r[9])~'='
~.(formatC(prod(prob.given), digits=5, format='f')) ), cex.main=.8)}

Sys.sleep(1.00)}
}
maximum.likelihood.animation(intercept=0, slope=0)

You set the parameters with the function 
below (default is intercept=0 and slope=0). 
A window will appear with a plot of the 
data and the logistic ogive based on your 
parameters. Above will be the likelihood. 
After ten seconds, the parameters will 
begin seeking the maximum likelihood.

© Sean Parker                                                    EdStats.Org
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The Y-Intercept and Slope Of the Logistic Model
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The slope’s sign determines whether the curve is monotonic decreasing or monotonic increasing. The slope’s 
magnitude determines the steepness of the slope, where the greater the magnitude, the greater the steepness.
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Interpreting the Fitted Logistic Model

MCAS
PLACEMENTp

PLACEMENTp
e 20.044

)1(ˆ1

)1(ˆ
log +−=









=−
=

)20.044(1

1
)1(ˆ

MCASe
PLACEMENTp +−−+

==

For a better (but still very opaque) interpretation, we can 
convert from log odds to odds by antilogging (i.e., 
exponentiating) both sides of the fitted model. In 
particular, we can exponentiate the slope to obtain the 
odds ratio.  E.g., exp(0.19524) = 1.215603

Comparing two students who differ by 1 point on the 
MCAS, we estimate that the odds of placement in college-
prep math for the higher scoring student are 1.22 times 
greater than the odds of placement for the lower scorer. 

An odds ratio compares two odds. The baseline odds for 
comparison are the odds associated with a given level (any 
level!) of the predictor. We compare to those baseline 
odds the odds associated with one unit greater of the 
predictor.  The odds ratio tells us how many times greater 
the odds are for one unit greater of the predictor.

We found a statistically significant positive relationship between placement in 
college-prep math and 8th grade MCAS scores (p < .001). Students who score 
higher on the MCAS are more likely to be placed in college-prep math.

Although this formulation of the fitted logistic model is 
not directly interpretable, it allows us to think in terms of 
probabilities (or percentages). Graph it!

True but useless interpretation:
Comparing two students who differ by 1 point on the 
MCAS, we estimate that the log odds of placement in 
college-prep math are 0.20 logits greater for the higher 
scoring student. (Remember, “logits” means “log odds.”)

Pick a few key values of the predictor and discuss 
the associated fitted probabilities for them.

Bordeline failing/ni students with an MCAS score 
of 220 have a 19% chance of placing in college-
prep math. Bordeline ni/proficient students with 
an MCAS score of 240 have a 92% chance.

© Sean Parker                                                    EdStats.Org
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Checking the “Linear In The Log Odds” Assumption

There are only two assumptions that you need to check:  independence and linearity.  Linearity!?!  Yes!  Remember 
that our model is a generalized linear model (with a logit link).  We are assuming that the logits (or log odds) of the 
outcome are linearly related to the predictor.

I recommend that you check the functional form in 
terms of probability. Do the red means/probabilities 
hug the logistic ogive? They do here.

Alternatively, you can logit transform all the 
probabilities (log(p/(1-p))). Annoyingly, for bins in 
which the mean/probability is 1, the logit is infinity.

Your method of inspection does not matter. If the dots hug the line in probability land, they will hug the line in logit land, and vice versa. The 
relationship is more intuitive in probability land. (In logit land, however, if the relationship is non-linear, a fix may be easier to see.) 

To Infinity and Beyond!

© Sean Parker                                                    EdStats.Org
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Dig the Post Hole 

Appendix B Post Hole:
Interpret a fitted simple logistic regression model, noting the direction, 
magnitude and statistical significance of the relationship. For magnitude, 
compare two fitted probabilities. As always, check the assumptions.

Evidentiary Material: Regression output and exploratory plot.

Here is the answer blank:

Here is my answer:

We found a statistically significant negative 
relationship between physical arguments and years of 
education (p < .001).  Women with 12 years of 
schooling have about a 25% chance of having had a 
physical argument. Women with 16 years of schooling 
have about a 15% chance. The linear-in-the-logits
assumption appears reasonable. As for independence, 
there may be clustering by community.

Tips:
• Report direction and statistical significance as usual.
• For magnitude, choose any two probabilities to compare.
• Use the plot to gauge roughly the probabilities.
• Check for linearity and independence. 

Sample: 2018 women in heterosexual relationships. National 
Couples Survey, 2005-2006. Physical argument: pushing, shoving, 
biting, pulling hair, hitting, throwing things, or using weapons.

© Sean Parker                                                    EdStats.Org
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Multiple Logistic Regression

© Sean Parker                                                    EdStats.Org

MIXEDHISPANICBLACKASIANMCAS
PLACEMENTp

PLACEMENTp
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==

Controlling for 8th grade math MCAS scores, the odds of placement in 
college-prep math for a Hispanic student are 0.176 times the odds of 
placement for a White student.

Note: exp(-1.74008) = 0.1755064, thus the odds ratio is 0.1755064.

Instead of saying that Hispanic is 0.176 times White, we can say that 
White is 5.68 times Hispanic.  1/.0176 = 5.68

Controlling for 8th grade math MCAS scores, the odds of placement in 
college-prep math for a White student are 5.68 times greater than 
the odds of placement for a Hispanic student.

We can also compare probabilities.

936.
1

1
)240,1|1(ˆ

)240*19.42(
=

+
==== +−−e

MCASWHITEPLACEMENTp

720.
1

1
)240,1|1(ˆ

)1*7.1240*19.42(
=

+
==== −+−−e

MCASHISPANICPLACEMENTp

Comparing two students who scored just Proficient (MCAS = 240), the 
White student has a 94% chance of placement, whereas the Hispanic 
student has a 72% chance.
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Graphing the Fitted Multiple Logistic Regression Model

© Sean Parker                                                    EdStats.Org

Notice the difference in percentages (i.e., the “effect” of ethnicity) varies by level of MCAS. This sounds like an interaction, but it’s not. In 
probability land, the relationship between White/Latino and placement differs by MCAS level, but not in logit land, with parallel trend lines.

White 
Students

Hispanic 
Students

We can check the linear-in-the-logits assumption with 
exploratory plots. There are so few Hispanic students, 
however, that it’s difficult to gauge whether the linear-
in-the-log-odds assumption is met in the population. But, 
remember, the assumption is about the population! Since 
the assumption appears so solid for White students, and 
it does not seem to be contradicted by Hispanic 
students, we will go with it. This is one of the many 
spots in data analysis where we perhaps engage the art 
more than the science. (Also note that there may be 
clustering within classrooms.)
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Correlation (Even Fancy Correlation) Does Not Imply Causation

3 Causal Rules of 3
I. Causal conclusions require 3 

conditions:

A. Correlation

B. Succession

C. “Necessary Connexion”

II. In addition to your Predictor and 
Outcome, always consider the 
possible influence of a 3rd Hidden 
Confounding Variable.

III. When presenting your pet causal 
conclusion, present 2 other 
plausible causal conclusions for 
the sake of balance.

This is not experimental data. We did not randomly assign 
students to MCAS scores. We did not randomly assign students 
to race/ethnicity. Logistic regression tells us that there is a 
relationship, but it does NOT tell us WHY there is a relationship.

Possible Causal Explanations:

• Bias in Placement
• Tracking Since 6th Grade
• Differences in Parental Advocacy
• MCAS Does Not Fully Capture Proficiency

Also note that we have yet to draw an inference from the 
sample to the population regarding PLACEMENT and RACE.

Review the 3 Causal Rules of 3 as reprised from Unit 4.  
Findings like this can tear a community apart. Handle with care.



Appendix B/Slide 25

Taxonomy of Fitted Binomial Logistic Regression Models
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model.0 <- glm(placement ~ NULL, family=binomial("logit"))
summary(model.0)
model.1 <- glm(placement ~ mcas, family=binomial("logit"))
summary(model.1)
model.2 <- glm(placement ~ mcas + asian + black + hispanic + mixed,family=binomial("logit"))
summary(model.2)

What is the Null Model?
What is that -2LL thing?

The Null Model is a model with NO predictors! We have seen the 
Null Model before, but not necessarily by that name. Recall from
Unit 5 that, to calculate the R-square statistic, we compare the 
sum of squares error/residual (SSE) to the sum of squares total 
(SST). The SSE is a “badness of fit” statistic for our model and its 
predictors. The SST is a “badness of fit” statistic for the mean. 
You can think of the mean as the intercept of a null model, a 
model with no predictors. Recall from Unit 3 that I describe the
mean as our “best guess” in absence of further information: NOT 
a “good guess,” BUT a “bad guess that happens to be the best we 
can do without further information.” In general, if we want to 
know if our model fits well, we need a baseline. The null model 
provides our baseline. Does our model improve our guesses over 
and above the null model?

In Units 1-10, we fit our general linear by minimizing the sum of 
squared error/residuals, so sums of squares supplied useful 
“badness of fit” statistics for model comparison.  In Appendix B, 
we fit our generalized linear model by maximizing the likelihood. 
To get a juicy “badness of fit statistic,” we log the likelihood and 
multiply it by -2 to get the -2 log-likelihood (-2LL).



Appendix B/Slide 26

Likelihood Ratio Tests (LRTs)
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Why is the -2 log-likelihood (-2LL) a “badness of fit” statistic?
Why is the -2LL juicy?
Recall from earlier in this Appendix B that we estimate the parameters for our model (i.e., fit our model) by choosing the regression 
coefficients that maximize the likelihood of the data.  So, for likelihood, the bigger, the better. Likelihood is a “goodness of fit” statistic. The 
likelihood is a probability (the probability of the data given the parameters), so it is bounded by 0 and 1 (but it’s usually very close to 0, even 
when we maximize it). What happens when we log the likelihood?  If we log 0, we get negative infinity. If we log 1, we  get 0.  Therefore, 
when we log our maximum likelihood, we will get a very large negative number! The log-likelihood is a “badness of fit” statistic; the bigger 
(the more negative), the worse, because the closer our log-likelihood is to negative infinity, the closer our likelihood was to 0. When we 
multiply our log-likelihood by -2, we get a doubly large positive number. Thus, the -2LL is a “badness of fit” statistic.

The -2LL is important because it allows us to test whether more complex models are statistically significantly better than their simpler 
counterparts.  Is the likelihood of the data given Model 2 statistically significantly greater than the likelihood  of the data given Model 1? Is the 
likelihood of the data given Model 1 statistically significantly greater than the likelihood  of the data given the Null Model? This test is called 
the Likelihood Ratio Test (LRT). Differences in -2LL between nested models follow a known sampling distribution, the chi-square distribution 
with degrees of freedom equal to the difference in degrees of freedom between the nested models. Hurray, for known sampling distributions!

??? p   ),2()2()( modelcomplex  moremodelsimpler modelcomplex  moremodelsimpler 
2 =−−−=− lllldfdfχ

Is Model 2 statistical significantly better than Model 1?

.322 p   ,68.4)4(2 ==χ 4 = dfsimpler model – dfmore complex model = 332 – 328
4.68 = (-2ll simpler model) – (-2ll more complex model) = 102.81 – 98.13

Is Model 1 statistical significantly 
better than the Null Model?

.001 p   ,93.164)1(2 <=χ

Based on a likelihood ratio test, race/ethnicity is not a statistically significant predictor of placement, controlling for 
MCAS scores, Χ2(4)=4.68, p =.322.  It is plausible that the race/ethnicity differences we see are due to sampling error.
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Logistic Regression with Ordinal Polychotomous Outcomes

So far, we’ve looked at logistic regression with a dichotomous outcome, but what if our outcome is polychotomous?  As it 
happens, at Riverside High School, there are in fact three levels of math courses, not just “Business” and “College-Prep,” but 
also “Honors.” Up to this point, I have collapsed “College-Prep” and “Honors,” because  I wanted to introduce you to binary 
logistic regression (i.e., logistic regression with dichotomous outcomes), but now let’s consider the polychotomous outcome. 
There are two types of polychotomies, nominal and ordinal. The outcome, LEVEL, is an ordinal polychotomy, because 2 = 
“Honors” is more advanced than 1 = “College-Prep” is more advanced than 0 = “Business.” (We will treat LEVEL as a 
polychotomous variable, as opposed to a continuous variable, because we do not trust that the jump from 0 to 1 is the same as 
the jump from 1 to 2 (i.e., we do not trust that the scale is interval). We will take a quick look at the fitted ordinal logistic 
regression model, by following the detailed steps in http://www.ats.ucla.edu/stat/r/dae/ologit.htm.

Placement In: 
Business Level         College-Prep Level         Honors Level

MCASHonors 1938.27.51)(itĝlo +−=

MCASHonorspCollegePre 1938.09.44)or  (itĝlo +−=

Is our ordinal logistic model (with MCAS 
as a predictor) statistical significantly 
better than the ordinal logistic model 
with no predictors (i.e., the null model)?

.001 p   ,75.307)1(2 <=χ

Notice that the parameter 
estimate for MCAS (.1938)  is the 
same for both groups (Honors
and CollegePrep-or-Honors). 

This is by assumption of the ordinal logistic model, the “proportional odds assumption.” Check it!
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Checking the Proportional Odds Assumption 

Note that  http://www.ats.ucla.edu/stat/r/dae/ologit.htm recommends a method, but I think mine is more intuitive. I just adapt 
the exploratory logistic function from earlier so that we can SEE the assumption.

MCASHonors 1938.27.51)(itĝlo +−= MCASHonorspCollegePre 1938.09.44)or  (itĝlo +−=

check.proportional.odds(as.numeric(level>=2), mcas,  logit.intercept=-51.27, logit.slope=.1938) 
check.proportional.odds(as.numeric(level>=1), mcas,  logit.intercept=-44.09, logit.slope=.1938) 

To me, the proportional odds assumption looks pretty darn reasonable (as does the linear-in-the-log-odds assumption).

MCAS
LEVELp

LEVELp
e 1938.37.51

)2(ˆ1

)2(ˆ
log +−=









>=−
>=

MCAS
LEVELp

LEVELp
e 1938.09.44

)1(ˆ1

)1(ˆ
log +−=









>=−
>=
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R Script For Checking The Proportional Odds Assumption

# a function for checking proportional odds assumpt ion
check.proportional.odds <- function(outcome, predicto r, logit.intercept, logit.slope) {

# pairwise deletion of missing data
outcome <- outcome[is.na(outcome)==FALSE & is.na(pre dictor)==FALSE]
predictor <- predictor[is.na(outcome)==FALSE & is.na (predictor)==FALSE]
# create basic scatterplot
plot(outcome~predictor)
# create ten equal-sized bins based on the predicto r
ten.bins <- ceiling(rank(predictor)/(length(predictor )/10))
# calculate the mean outcome for each bin
outcome.bins <- aggregate(outcome, by=list(ten.bins),  FUN=mean)
# calculate the mean predictor for each bin
predictor.bins <- aggregate(predictor, by=list(ten.bi ns), FUN=mean)
# in each of the ten bins, plot the mean outcome vs . the mean predictor
points(predictor.bins[,2], outcome.bins[,2], pch=16 , col='red') 
# create protypical predictor values for the fitted logistic curve
proto.pred <- seq(min(predictor), max(predictor), by= .001)
# generate predicted values for the fitted logistic  curve
fitted.logits <- logit.intercept + logit.slope*proto.p red
# create an inverse logit function
inv.logit <- function(x) {exp(x)/(1+exp(x))}
# plot the fitted logistic curve
lines(proto.pred, inv.logit(fitted.logits))

}
check.proportional.odds(as.numeric(level>=2), mcas,  logit.intercept=-51.27, logit.slope=.1938) 
check.proportional.odds(as.numeric(level>=1), mcas,  logit.intercept=-44.09, logit.slope=.1938) 
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Logistic Regression with Nominal Polychotomous Outcomes
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Your polychotomous outcome need not be ordinal to apply logistic regression technique. Even though out outcome, LEVEL, is 
ordinal, for the sake of this quick example we’ll treat it as nominal. We know the order is informative, but I won’t tell the 
computer if you won’t. We will take a quick look at the fitted nominal logistic regression model, by following the detailed steps 
in http://www.ats.ucla.edu/stat/r/dae/mlogit.htm.

MCAS
LEVELp

LEVELp
e 1931.97.43

)0(ˆ
)1(ˆ

log +−=








=
=

MCAS
LEVELp

LEVELp
e 3848.66.94

)0(ˆ
)2(ˆ

log +−=








=
=

We could have chosen any level as the reference level. 
We chose LEVEL= 0, “Business Math.”

Placement In: 
Business Level         College-Prep Level         Honors Level

LRT

There is no  proportional-odds 
assumption, but there is an 
independence-of-irrelevant-
alternatives assumption. Once I 
choose option A over option B, 
then any additional option C will 
be between option A and option C. 
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Special Property of Odds Ratios: Invariance Under Retrospective Sampling 
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As you can tell, I prefer probabilities to odds and odds ratios. The not-so-good reason for my preference is that I personally find 
odds and especially odds ratios unintuitive.  The good reason for my preference is that my audiences find odds and especially 
odds ratios unintuitive.  As a data-analyst, my job is to translate the results into language that my audience can understand.

Odds ratios, however, have a special property that may be useful when studying rare outcomes: invariance under retrospective 
sampling.  What is prospective vs. retrospective sampling?  Prospective sampling is the standard case in our field of education.
With prospective sampling, we take a random sample from a (perhaps school) population, and we observe how the outcome 
happens to fall. Still prospectively, sometimes we take a stratified random sample, in which we oversample a minority group so 
the we have a sample size sufficient for precise estimates. This oversampling is fine as long as we include the group categories 
in our model as predictors in order to control for the potential confound. Such a stratified random sample is still a prospective 
sample, because we collected our data and let the outcome fall where it may. On the other hand, with retrospective sampling, 
we essentially stratify by the outcome!  We do not let the outcome fall where it may; rather, we set the outcome by design and 
let the predictors fall where they may.  This is weird, and usually a bad idea. Nevertheless, sometime we want to sample based 
on the outcome, especially when one level of the outcome is extremely rare.  Odds-ratios permit retrospective sampling.

See the ILLCAUSE practice for an example of a retrospective design. Note that, hitherto, the ILLCAUSE practice has been a 
prospective design based on a random sample stratified by a dichotomous predictor, ChronicallyIll. As long as we included 
ChronicallyIll as a predictor in our models of the ILLCAUSE data, our results were not confounded by the sampling method.  For 
this practice example, however, ChronicallyIll is the outcome, not the predictor. All of a sudden our design switched from 
prospective (where we let the outcome fall as it may) to retrospective (where we sampled based on the outcome). Tricky!

From our earlier prospective study based on a random sample of the entire Riverside High School population (N=334), we found 
that our dichotomous outcome, PLACEMENT, was 86% College-Prep (n=288) and 14% Business Math (n=46). This was a 
prospective study because we let the outcome fall where it may, but suppose we only had resources to collect data on 50 
students. If we prospectively sampled, and let the outcome fall where it may, then we would have an N=50 broken down by 
about n=43 for College-Prep and n=7 for Business Math, based on the percentages in the population. That n=7 sadly does not 
give us enough statistical power to detect a reasonable effect size. Don’t we wish we could sample n=25 and n=25 on the 
outcome (letting the predictors fall where they may)?  We CAN because the odds ratio is invariant under retrospective sampling.

MCAS
LEVELp

LEVELp
e 1931.97.43

)0(ˆ
)1(ˆ

log +−=








=
=

Logistic regression model fit based on a 

prospective sample (N=334, n=288, n=46):

MCAS
LEVELp

LEVELp
e 1939.09.46

)0(ˆ
)1(ˆ

log +−=








=
=

Logistic regression model fit based on a 

retrospective sample (N=50, n=25, n=25):
The odds-ratios are equal in expectation. 
Remember to exponentiate (i.e., antilog) 
to get the odds-ratio!

The fitted intercepts are not equal, so neither are 
the fitted probabilities! NOT invariant.
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Simulate Odds-Ratio Invariance Under Retrospective Sampling
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# create data in case the real dataset is not handy
mcas <- rnorm(334, 240, 10)
p.placement.given.mcas <- function(x) 1/(1+exp(-(-43. 97+ 0.1931*x)))
placement <- rbinom(334, 1, p.placement.given.mcas(m cas))
glm(placement ~ mcas, family=binomial("logit"))

retrospective.sample <- function(dichotomous.outcome,  predictor, n.1=25, n.0=25){
# pairwise deletion of missing data
dichotomous.outcome <-

dichotomous.outcome[is.na(dichotomous.outcome)==FAL SE & is.na(predictor)==FALSE]
predictor <- predictor[is.na(dichotomous.outcome)==F ALSE & is.na(predictor)==FALSE]
# take a random subsample of specified size
subsampled.predictor <-

c(sample(predictor[dichotomous.outcome==1], n.1), 
sample(predictor[dichotomous.outcome==0], n.0))

subsampled.outcome <- c(rep(1, n.1), rep(0, n.0))
# output a subsample
data.frame(subsampled.outcome, subsampled.predictor )

}  
pump.out.coefs <- function(o){ 

glm(subsampled.outcome ~ subsampled.predictor, 
data=retrospective.sample(placement, mcas, n.1=25, n.0=25), 
family=binomial("logit"))$coefficients

}
simulation.results <- sapply(1:10000, pump.out.coefs)
simulation.results <- as.matrix(t(simulation.results) )
# Use medians because some of the 10,000 samples do n’t allow convergence 

# so their results are crazy outliers
median.intercept <- median(simulation.results[,1]) 
median.slope <- median(simulation.results[,2])
median.intercept
median.slope
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3 Causal Rules of 3

• Causal conclusions require 3 conditions:

• Correlation

• Succession

• “Necessary Connexion”

• In addition to your Predictor and Outcome, always consider the possible influence of a 
3rd Hidden Confounding Variable.

• When presenting your pet causal conclusion, present 2 other plausible causal 
conclusions for the sake of balance.

Binary Logistic Regression:
There are only two assumptions that you need to check:  independence and linearity.  

Linearity!?!  Yes!  Remember that our model is a generalized linear model (with a logit
link).  We are assuming that the logits (or log odds) of the outcome are linearly related to 
the predictor.

Ordinal Logistic Regression:

Notice that the parameter estimate for MCAS (.1938)  is the same for both groups (Honors and 
CollegePrep-or-Honors). This is by assumption of the ordinal logistic model, the 
“proportional odds assumption.” Check it!

Multinomial Logistic Regression:

There is no  proportional-odds assumption, but there is an independence-of-irrelevant-
alternatives assumption. Once I choose option A over option B, then any additional option 
C will be between option A and option C.
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Appendix B Appendix: Key Concepts
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We found a statistically significant positive relationship between placement in college-prep math and 
8th grade MCAS scores (p < .001). Students who score higher on the MCAS are more likely to be 
placed in college-prep math.

Comparing two students who differ by 1 point on the MCAS, we estimate that the odds of placement 
in college-prep math for the higher scoring student are 1.22 times greater than the odds of 
placement for the lower scorer.

Bordeline failing/ni students with an MCAS score of 220 have a 19% chance of placing in college-prep 
math. Bordeline ni/proficient students with an MCAS score of 240 have a 92% chance.

Controlling for 8th grade math MCAS scores, the odds of placement in college-prep math for a 
Hispanic student are 0.176 times the odds of placement for a White student.

Controlling for 8th grade math MCAS scores, the odds of placement in college-prep math for a White 
student are 5.68 times greater than the odds of placement for a Hispanic student.

Comparing two students who scored just Proficient (MCAS = 240), the White student has a 94% 
chance of placement, whereas the Hispanic student has a 72% chance.

Based on a likelihood ratio test, race/ethnicity is not a statistically significant predictor of 
placement, controlling for MCAS scores, Χ2(4)=4.68, p =.322.  It is plausible that the 
race/ethnicity differences we see are due to sampling error.
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Appendix B Appendix: Key Interpretations
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Appendix B Appendix: Key Terminology

An odds ratio compares two odds. The baseline odds for comparison are the odds 
associated with a given level (any level!) of the predictor. We compare to those 
baseline odds the odds associated with one unit greater of the predictor.  The odds 
ratio tells us how many times greater the odds are for one unit greater of the 
predictor.
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Perceived Intimacy of Adolescent Girls (Intimacy.csv)

• Source: HGSE thesis by Dr. Linda Kilner entitled Intimacy in Female 
Adolescent's Relationships with Parents and Friends (1991). Kilner
collected the ratings using the Adolescent Intimacy Scale. 

• Sample: 64 adolescent girls in the sophomore, junior and senior classes 
of a local suburban public school system. 

• Variables:

B_Physical 1 if the student hit the ceiling (7) of physical intimacy with boyfriend
0 else

B_Trust A continuous variable (0-7) of trust in boyfriend

• Overview: Dataset contains self-ratings of the intimacy that 
adolescent girls perceive themselves as having with: (a) their 
mother and (b) their boyfriend. 
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Perceived Intimacy of Adolescent Girls (Intimacy.csv)
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High School and Beyond (HSB.csv)

• Source: Subset of data graciously provided by Valerie Lee, University of 
Michigan.

• Sample: This subsample has 1044 students in 205 schools. Missing data 
on the outcome test score and family SES were eliminated. In addition, 
schools with fewer than 3 students included in this subset of data were 
excluded.

• Variables:

Improved.GPA 1 for students who improved their GPAs from 10th grade to 12th grade
0 Else

BYSES Base year SES 

• Overview: High School & Beyond – Subset of data 
focused on selected student and school characteristics 
as predictors of academic achievement.
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High School and Beyond (HSB.csv)
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Understanding Causes of Illness (ILLCAUSE.csv)

• Source: Perrin E.C., Sayer A.G., and Willett J.B. (1991). 

Sticks And Stones May Break My Bones: Reasoning About Illness 
Causality And Body Functioning In Children Who Have A Chronic Illness, 
Pediatrics, 88(3), 608-19.

• Sample: 301 children, including a sub-sample of 205 who were 
described as asthmatic, diabetic,or healthy. After further reductions 
due to the list-wise deletion of cases with missing data on one or more 
variables, the analytic sub-sample used in class ends up containing: 33 
diabetic children, 68 asthmatic children and 93 healthy children.

• Variables:

ChronicallyIll 1 = Asthmatic or Diabetic, 0 = Health
SES Child’s SES (Note that a high score means low SES.)

• Overview: Data for investigating differences in children’s 

understanding of the causes of illness, by their health 
status.
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Understanding Causes of Illness (ILLCAUSE.csv)
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Warning! We cannot trust these probabilities. 
This sample is restrospective. We collected a 
random sample of chronically ill children and a 
random sample of healthy children. We collected 
observations based on the outcome and looked 
back. This retrospective design must be handled 
with care. Happily, logistic regression is specially 
capable for such designs. See SLIDE.
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Children of Immigrants (ChildrenOfImmigrants.csv)

• Source: Portes, Alejandro, & Ruben G. Rumbaut (2001). Legacies: The Story of 
the Immigrant SecondGeneration. Berkeley CA: University of California Press.

• Sample: Random sample of 880 participants obtained through the website.

• Variables:

Depressed 1 if the student scored 2 or more standard deviations above 
the mean depression level, 0 else

SES Composite family SES score

• Overview: “CILS is a longitudinal study designed to study the 
adaptation process of the immigrant second generation which is 
defined broadly as U.S.-born children with at least one foreign-born 
parent or children born abroad but brought at an early age to the 
United States. The original survey was conducted with large samples 
of second-generation children attending the 8th and 9th grades in 
public and private schools in the metropolitan areas of Miami/Ft. 
Lauderdale in Florida and San Diego, California” (from the website 
description of the data set).



Appendix B/Slide 43

Children of Immigrants (ChildrenOfImmigrants.csv)
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Human Development in Chicago Neighborhoods (Neighborhoods.csv)

• Source: Sampson, R.J., Raudenbush, S.W., & Earls, F. (1997). Neighborhoods 
and violent crime: A multilevel study of collective efficacy. Science, 277, 918-
924. 

• Sample: The data described here consist of information from 343 Neighborhood 
Clusters in Chicago Illinois. Some of the variables were obtained by project staff 
from the 1990 Census and city records. Other variables were obtained through 
questionnaire interviews with 8782 Chicago residents who were interviewed in 
their homes. 

• Variables:

No.Homicides 1 if there were no homicides in the neighborhood in 1990
0 Else

Conc.Dis A continuous composite variable measuring concentrated disadvantage

• These data were collected as part of the Project on 
Human Development in Chicago Neighborhoods in 1995. 
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Human Development in Chicago Neighborhoods (Neighborhoods.csv)
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4-H Study of Positive Youth Development (4H.csv)

• Sample: These data consist of seventh graders who participated in 
Wave 3 of the 4-H Study of Positive Youth Development at Tufts 
University.  This subfile is a substantially sampled-down version of the 
original file, as all the cases with any missing data on these selected 
variables were eliminated.

• Variables:

Depressed 0 = No (1-15 on Depression) 
1 = Yes (16+ on Depression)

PeerSupp Peer Support 

• 4-H Study of Positive Youth Development

• Source: Subset of data from IARYD, Tufts University
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4-H Study of Positive Youth Development (4H.csv)
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